
An EEG (Bio)Technological System For Assisting
The Disabled People

Dan-Marius Dobrea, Monica-Claudia Dobrea

Faculty of Electronics and Telecommunications, “Gh. Asachi” Technical University, Iasi, Romania

Abstract-One of the main goal of our research is the
implementation of a real time brain-computer interfacing system
able to interpret the EEG signal and, accordingly, to command
different external devices. Our team proposes a new design for
this kind of bio-instrumental systems, based on the concept of
dynamic modularity of the entire system. The system is conceived
as an independent, self-consistent unit that analyses and classifies
in real-time different mental tasks for assisting persons with
motor disabilities. In this paper we present some of the obtained
results. At the end, this mobile unit (implemented with a PC104+
system) will be itself a modular, easily reconfigurable
development platform dedicated to solve, in a more facile
manner, different experimental classification paradigms.

I. INTRODUCTION

Nowadays, there is a number of brain computer interface
(BCI) systems that are presented in the literature, all of these
representing the concepts and implementations of different
research teams from the BCI field (for e.g., see [1], [2]).

Analyzing these BCI systems one could notice that they are
designed only for a particular activity of the central nervous
system. Moreover, each of them processes the particular
activity in a particular way (using specific processing and
classification methods), and then controls, in a certain manner,
a device for one or several subjects. For these reasons, it was
concluded that all these systems are not suited for systematic
studies in the field. Thus, the implementation of a more
general BCI system circumventing these drawbacks has
become a necessity.

In addition, the impossibility of an impartial evaluation of
the performances of different systems – due to the diversity of
the employed techniques, to the structural design differences
of the applied system, to the data sets, to the different
investigated mental tasks etc. – represents another
disadvantage.

The lack of a common vocabulary between different
laboratories that are involved in this field was mentioned as

well, [3]. In this respect, it was argued that the poor
communication is generated by the lack of common terms and
by the inexistence of a functional model in designing the BCI
systems, [3].

For example, one of these systems – used by the Medical
Informatics Department in the University of Technology Graz,
Austria –, runs on a Pentium II IBM compatible platform and
it has, as a central core used for software development, the
Matlab with Simulink environment [1]. Basically, this system
was intended to replace the old one “Graz-BCI” which had a
series of drawbacks: the necessity of using simultaneously an
external DSP processing kit (with all the existing
inconveniencies: the need of writing C and assembly code for
this specific device, the necessity of existence of a
communication software module with the personal computer
and so on), the necessity of format conversion for the acquired
signal files for the offline analysis, the impossibility of using
the same code for online-offline analysis, the static character
of the system (the new system requirement was to run on a
laptop) etc.

The authors of the last proposed system presented above
consider the use of the MatlabTM with SimulinkTM
environment (a graphical environment tool used for
application development) and of the Real-Time Workshop
module (which allows the automatic generation of the
developed application code) as being its major advantage [1].
Both, Simulink and the Real-Time Workshop module are parts
of the Matlab environment.

Nevertheless, the same authors admit the necessity of
writing the critical subroutines in C language (with an external
compiler) followed, then, by their embedding in the Matlab
environment [1].

One first attempt to standardization in the field of BCI
systems was proposed in [3]. The authors suggested a general
model for the BCI systems. Unfortunately, this model was a
pure theoretical one and it did not succeed to impose itself.

In order to achieve a systematic evaluation and objective
assessment between different applied methods, algorithms,
operating protocols etc. another general BCI system, called
BCI2000 [2], was proposed. This BCI2000 system is
composed of four different modules that intercommunicate.
Each module represents a functional block of the system. The
inter-modules communication is realized by means of the
TCP/IP protocol. In this way, each module can be written in
different programming languages (as long as the
communication protocol is satisfied); further more, each
module can be installed on a specific computer that is
connected, together with the other computers supporting the
other running modules, to a network (internet or intranet).

The BCI2000 system does not impose any restriction
regarding the number of the acquisition channels, the sampling
frequency and the complexity of the processing algorithms.
Moreover, it is offering the possibility of the offline analysis
by means of storing the acquired data.

The documentation of the system and the sources for each
block are freely available and they can be downloaded from a
web site [4] only for educational and research applications.
Further more, several already implemented algorithms are
offered. Until now, due to the possibility to freely access the
source code, approximately 120 laboratories all around the
world adopted this system.

I. THE SYSTEM REQUIREMENTS

Having in view all the above mentioned researches, the
large diversity of data processing and classification techniques
used within the framework of the actual BCI systems, we
propose in this paper the implementation of a development
platform for BCI applications based on a new concept. The
new platform will have the following fundamental
characteristics:

• autonomy, given by the possibility of the system to be
mounted on a mobile device (e.g. on a wheel chair
controlled by a completely paralyzed subject) – in this
case, restrictions regarding the system’s power
consumption and the computational costs have to be
taken into consideration;

• ability to process in real time the acquired signals;
• flexibility and independent operating mode – due to

the large variability of existing cerebral affections, of
the phenomenon whished to be analyzed, the system
has to be able to be configured to work with different
types of methods and algorithms, combined in
different structures and without the modification of
the other parts of the system that are not directly
involved;

• scalability – with no restrictions on the magnitude of
the data sets;

• ability to offline analyze the data sets.
II. THE SYSTEM IMPLEMENTATION

The system is composed of the following main parts:
1. A Mindset 24 EEG acquisition system. The Mindset is a

biomedical device able to acquire the brain electric
activity. It is connected to the PC104+ embedded system
through a SCSI interface and it is able to acquire the EEG
signal using 24 independent channels, with a 16 bits
analog to digital converter on each acquisition channel.
This particular system was chosen mainly because it is
based on open software architecture.

2. The embedded PC is a PC104+ system produced by
Kontron company. The PC104+ is a MOPSlcd7 system
having an Intel Pentium III processor at 500 MHz, 256
MB of RAM, 1 GB of USB flash hard disk, a 10/100
BaseTx Ethernet incorporated network adapter, an USB
interface and an embedded BIOS.

3. A software platform that complies with all the previously
presented requirements. The schematic of the software
application and the data flow are presented in Fig. 1.

The new introduced concept that regards this BCI
development platform is mainly based on the dynamic
modularity of the system. In this way, each module can be
independently modified; in addition, by sending a new module
over the communication port, the new module automatically
replaces the old one. By dynamically loading the module, the
re-initialization of the entire application becomes unnecessary
and, thus, the system will transparently use the new module.

O u tp u t lin e s

C o m p o n e n ts S in c ro n is a tio n

EE
G

 a
cq

ui
si

tio
n

sy
st

em D
at

a
st

or
ag

e

Si
gn

al

pr
ep

ro
ce

ss
in

g

C
la

ss
ifi

ca
tio

n

In
fo

rm
at

io
n

Po
st

pr
oc

es
si

ng

Sy
st

em
 o

ut
pu

t

M o n ito r

S e ria l P o rt

U S B

C o m m u n ic a tio n
M o d u le

F ra m e le v e l a p p lic a tio n

S y s te m c o n fig u ra tio n a n d d a ta v is u a liz a tio n

P a ra lle l p o rt

1 0 0 b a s e T

Figure 1. The schematics of the new system

Consequently, only by understanding the manner of the
intermodule communication and without any knowledge of the
whole system (architecture, other algorithms used in the rest
of the system), a researcher will have the possibility to focus
only on the development of a single algorithm embedded into
a single module, disregarding the rest of the system. In this
way an abstraction of the global working principle of the
system is obtained.

The Dynamic Link Libraries are used to create all the user-
defined modules: EEG acquisitions, data storages, signal
preprocessing, feature extractions, classifications, post-
processing and output command.

Since these DLLs can be developed in different languages
(e.g. Visual C++, LabWindos CVI, Borland C++ Builder,
Visual Basic, Borland Delphi etc.), the independence of the
system is not one related only to that of the modules (of
their particular combination in order to solve a problem), but
also to its independence with respect to the development
environments used in the design of the modules.

All the DLLs are dynamically loaded (explicitly link) by
the frame level of the application, Fig. 2. Based on the
Windows SDK functions, LoadLibrary and FreeLibrary, each
DLL module can be independently loaded or discarded in
respect to the other DLLs and without restarting the whole
BCI system.

The data transfer between the modules is generally based
on data arrays – mainly vectors. The modules consist of
simple functions that receive the addresses of the arrays, as
well as, the information regarding their dimensions (number of
lines and columns); further, the modules return other data
arrays, together with their dimensions. In particular, in order
to store and to represent the data we chose the vector
technique, given its simplicity of data allocation and
manipulation. Even if the EEG data acquisition system
acquires two dimensional arrays (e.g. 8 channels and 32768
samples on each channel), the storage and the access to a
particular sample of the vector is very simple – dataBuffer [i +
j *channelLengh], where channelLengh = 32768, j is the
channel number and i is the sample number.

The proposed system was first developed using a standard
PC. Nevertheless, in all the development stages we had in
mind that, at the end, the software will be executed by a
PC104+ embedded system. The final tests were done on the
embedded system.

The BCI applications are considered data-intensive and
computing-intensive. Consequently, the frame level
application of the system, Fig. 1, is built on the concept of
being as less as possible expensive (both, data and
computing). From this reason, the frame level application only
loads/unloads the DLL modules, dynamically allocates the
data arrays, sends from a function to another the addresses of
vectors and their dimensions and, whenever it is required, it
fires off the exported functions from the DLLs.

Each module is composed of a number of standard
functions that must have standard names in all the modules,
Table 1. These functions define the unique functionality of the
modules.

In Table I the “****” symbols represent a specific name
associated with each specific module – “Input” for the
acquisition module, “PreProc” for the signal preprocessing
module, “FeatureExt” for the features extraction block,
“Classif” for the functions associated with the classification
DLL, “PostProc” and “Output” for the modules used in
information postprocessing and, respectively, system output.

It is not obligatory that all modules to include all the
functions presented in Table 1, but only those specific
functions necessary to implement their particular
functionalities.

TABLE I.
THE STANDARD NAMES FOR THE EXPORTED FUNCTIONS

Exported function name Function task

exemplarStart_****

This function is executed
before each feature vector is
presented to the classification
module.

epochStart_**** This function is fired up
before each epoch is started.

moduleReset_****
The function is used when the
frame level application resets
the entire system.

moduleInit_****
This function is fired up in
order to initialize each
particular module.

modulePerform_****
The function implements the
main functionality of the
module

moduleFree_****
Discards all data that were
previously dynamically
allocated in the DLL.

moduleInfo_****

This function supplies
different particular
information regarding the
state and the functionality of a
module.

The moduleInit_**** function initializes the module and

return to the frame level of the application an integer value
that is directly correlated with the number and type of the
internal implemented functions into the DLL. Based on these
initializations given directly (as function arguments or
supplied by a user through the one or several user interface
panels) the functionality of the entire module is settled.

When a DLL is loaded into the virtual address space of the
current process (the frame level of the application) the
moduleInit_**** is also executed; in this mode the DLL can
initialize any instance of data and structures.

III. RESULTS

Up to now, in order to test the concepts of the proposed
system, we implemented the following modules: signal
preprocessing, features extractions, classification and the
system output. We performed two types of tests: on-line tests
and off-line tests.

In the off-line tests the EEG acquisition system was only
simulated using a DLL that loads files previously stored on the
PC104+ flash hard disk. This last DLL represents another
independent module used by the frame level applications, Fig
2.

For this test we used the same EEG database that was also
used by us in two other previous studies [10], [11], and that

was freely provided by the Colorado State University,
Department of Computer Science [12]. In these EEG time
series, the EEG signal was recorded simultaneously from 6
electrodes corresponding, in the International 10-20 system, to
the C3, C4, P3, P4, O1 and O2 positions on the scalp. During
these recordings the 4 involved subjects performed (without
verbalization, with eyes closed) the following mental tasks:

Main program –
frame level of

application

The user interfaces
necessary to initialize
the acquisition DLL

The user interface panel used to configure
the structure of the all file names

The user interface panel used to
configure the data loaded from files

The user interfaces
panel from the system

output DLL

The path and
name of the

specific DLL

The configuration
setup for the data
matrix (number of
lines and column)

transferred between
feature extraction

DLL and
classification DLL

Figure 2. The user interface panels from the frame level application and from several DLLs in the initialization
stage of the system

basic cerebral activity (the subject was relaxed as much as
possible), writing (mental composition of a letter), mathematic
calculus (multiplication), visual counting (imagining a table
on which sequential numbers were written) and rotation of a
geometric figure (the visualization of a rotating three-
dimensional object). All channels were referred to the right
mastoid A2. They were digitally sampled at 250 Hz and each
recording lasted 10 s. The system output module presents the
classification result on the PC104+ monitor using five virtual
LEDs associated with the tasks, Fig. 2.

In order to classify the tasks – having as final goal the aim
to test the EEG bio-instrumental system and not to obtain
better performances –, we used the same approach presented
in [10]. For each channel 6 AR coefficients were extracted;
thus, a feature vector of 36 elements was obtained for each
consecutive time interval. In the classification of the feature
vectors one hidden layer backpropagation trained neuronal
network was used.

All the neural networks used on this research were
developed, built and tested using the NeuroSolution software
package. The C++ code used in the classification module was
also generated with the same environment.

The classification results, obtained with our EEG bio-
instrumental system and presented in Table II, are comparable
with the ones presented in [10]. In both analyses the methods
for preprocessing, features extractions and classification were
the same and all the parameters used by these methods were
identical.

Once again, we want to stress that the main goal of this
paper was only to test the concepts of the new proposed
system and not to obtaining superior classification
performances.

TABLE II.
PERFORMANCES OBTAINED ON THE CROSS-VALIDATION SET

Result
assigned

Real
classes ba

se
lin

e

co
un

t

le
tte

r

m
at

h

ro
ta

te

baseline 39.2 30.5 18.1 9.2 3.0
count 22.3 62.4 0 13.1 2.2
letter 5.2 6.1 55.3 19.3 14.1
math 4.2 5.3 14.1 75.0 1.4
rotate 17.3 14.2 6.1 6.1 56.3

The on-line obtained results were similar with the ones

presented above.
The dynamic modularity of the system was also tested in

two other main trials.
First, a suboptimal neural network was built, trained – in

order to obtain the maximum of the permitted performances –
and implemented into a dynamic link library. This neural
network had the same dimensionality of the input feature
space like the optimal neuronal structures presented above.
Based on some very simple actions (like stopping the
execution of the system, removing the existing classification
system, loading the new one and starting the system)

performed from the frame level user interface panel and
without interacting with the other modules, Fig. 2, the
behavior of the system was dynamically changed, without
recompiling the entire application.

In a second test, a new neural network was implemented
into a DLL, the only difference consisting in a larger input
feature space. Eight auto-regressive coefficients were
extracted from each channel. Loading the new neuronal
classifier and changing the dimensionality parameters of data
matrix (representing the data flow between the features
extractions and the classification dynamic link library) – were
the only steps required to dynamically implement the new
structure. As a result, we obtained a different system having
different characteristics.

As a conclusion, the EEG bio-instrumental system behaved
excellent and proved its capability to interpret the cerebral
activity of the brain and to transmit further commands.

IV. CONCLUSIONS

Conclusively, through the tests we done the new developed
EEG bio-instrumental system demonstrated: its flexibility and
independent operating mode, its ability to process in real time
the EEG signals and, also, the simplicity of the idea that
generates low data-intensive and computing-intensive burden
at the frame level of the application.

Such an implementation of the system is capable to run on
a PC104+ and on a PC system without any difficulty as long
as the operating system is able to support the software
application.

The flexibility of the system is also revealed by the
unsophisticated implementation and by the straightforward
usage of different modules, in any desired combination. All
these capabilities facilitate the comparison of the results, thus
helping in the best method selection process. Due to the
simple communication algorithm, of call function type, one
gets rid of the TCP/IP communication delays (that exist on a
similar BCI2000 system); also, the understanding level of the
concepts that underlie the communication is minim, thus
facilitating the implementation method and increasing the
system working speed.

In conclusion, this EEG bio-instrumental system shows to
be a promising development platform for a large field of BCI
applications.

ACKNOWLEDGMENT

The Grant 2735/19.05.2006, theme 26, code CNCSIS 17 of
the National University Research Council has supported the
research for this paper.

REFERENCES

[1] C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, and G.
Pfurtscheller, “Rapid prototyping of an EEG-based brain-computer
interface (BCI),” IEEE Trans. on Neural Syst. and Rehab. Eng., vol. 9,
no. 1, pp. 49-58, 2001.

[2] G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, and J.R.
Wolpaw, “BCI2000: a general-purpose brain-computer interface (BCI)
system,” IEEE Trans. on Biomed. Eng., vol. 51, no. 6, pp. 1034-1043,
2004.

[3] S.G. Mason, and G.E. Birch, “A general framework for brain-computer
interface design”, IEEE Trans. on Neural Sys. and Rehab. Eng., vol. 11,
no. 1, pp. 70-85, 2003.

[4] The BCI2000 system web address for doccumentation and sources code,
http://www.bci2000.org/BCI2000/Home.html.

[5] G. Schalk, D.J. McFarland, T. Hinterberger, N. Birbaumer, and J.R.
Wolpaw, “BCI2000: a general-purpose brain-computer interface (BCI)
system,” IEEE Trans. on Biomed. Eng. , vol. 51, no. 6, pp. 1034-1043,
2004.

[6] J.R. Wolpawa, N. Birbaumerc, D.J. McFarlanda, G. Pfurtschellere, and
T.M. Vaughan, “Brain-computer interfaces for communication and
control,” Clin. Neurophys., vol. 113, pp. 767-791, 2002.

[7] H. Serby, E. Yom-Tov, and G.F. Inbar, “An improved P300-based brain-
computer interface”, IEEE Trans. on Neural Sys. and Rehab. Eng., vol.
13, no. 1, pp. 89-98, 2005.

[8] C. Guger, A. Schlögl, C. Neuper, D. Walterspacher, T. Strein, G.
Pfurtscheller, “Rapid prototyping of an EEG-based brain-computer

interface (BCI),” IEEE Trans. on Neural Syst. and Rehab. Eng., vol. 9,
no. 1, pp. 49-58, 2001.

[9] J.M. Heasman, T.R.D. Scott, L. Kirkup, R.Y. Flynn, V.A. Vare, and
C.R. Gschwind, “Control of a hand grasp neuroprosthesis using an
electroencephalogram-triggered switch: demonstration of improvements
in performance using wavepacket analysis,” Med. & Biol. Eng. &
Comp., vol. 40, pp. 588-593, 2002

[10] V.A. Maiorescu, M.C. Serban, and A.M. Lazar, “Classification of EEG
signals represented by AR models for cognitive tasks - a Neural
Network Based Method”, in Proc. of Int. Symp. on Signal Circ. and
Sys., Iasi, Romania, July 10-11, vol. 2, pp. 441-444, 2003

[11] M.C. Serban, and D.M. Dobrea, “A cognitive tasks’ discrimination
study,” in Proc. of the Inter. Sym. on Sig. Circ. and Sys., Iasi, Romania,
July 14-15, 2005, vol. 2, pp. 805-808.

[12] EEG data base, http://www.cs.colostate.edu/~anderson/, 2000.

